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Abstract—This paper is primarily expository, relating elements of graph theory to a computational theory
of psychological similarity (or dissimilarity). A class of networks called Pathfinder networks (PFNETS)
is defined. PFNETs are derived from estimates of dissimilarity for pairs of entities. Thus, PFNETSs can
be used to reveal aspects of the structure inherent in a set of pairwise estimates of dissimilarity. In order
to accommodate different assumptions about the nature of the measurement scale (i.e. ordinal, interval,
ratio) underlying the data, the Minkowski r-metric (also known as the L norm) is adapted to computing
distances in networks. PFNETs are derived from data by: (1) regarding the matrix of dissimilarities as
a network adjacency matrix (the DATANET); (2) computing the distance matrix (or r-distance matrix
using the Minkowski r-metric) of the DATANET and (3) reducing the DATANET by eliminating each
arc that has weight greater than the r-distance between the nodes connected by the arc. PENET properties
of inclusion, relation to minimal spanning trees, and invariance under transformations of data are
discussed.

INTRODUCTION

There are several available methods for analyzing similarity or dissimilarity data. Some, such as
multidimensional scaling [1-6], assume a continuous, low-dimensional space as the underlying
model. Other methods derive from discrete models that yield hierarchical clusters [7], overlapping
clusters [8]; tree structures [9-11]; or networks [12-15]. While spatial models have mathematical
foundations in geometry, discrete models often derive from graph theory.

The foundations of multidimensional scaling (MDS) have been explored in some depth [16],
leading to formal specifications of the assumptions underlying MDS as a model of the psycho-
logical representation of stimuli. In recent years, considerable work has gone into the development
of discrete models, and the connections between discrete models and graph theory are becoming
more apparent (cf. Shepard and Arabie [8]). As representations of mental structure, discrete models
offer alternatives that are often closer to psychological theory (e.g. feature, network and categorical
theories). In this paper, we discuss network representations and their relationship to dissimilarity
data. Pathfinder, an algorithm for deriving networks from dissimilarities, is tied to some funda-
mental concepts in graph theory. Since much of the discussion revolves around formal properties
of networks, a brief review of some basic concepts in graph theory will provide a point of departure.

Graph Theory

Graph theory is the mathematical study of structures consisting of nodes with edges or arcs
connecting some pairs of nodes [17-19]. The terminology used in graph theory varies somewhat
from one source to another. The presentation here represents a distillation of various sources with
adaptations for our purposes.

A digraph G is a finite set of nodes (V) and a subset of V' x V—the arcs. For example, given
a set of nodes {1,2,...,n}, the ordered pairs (1,2), (4,3), (7, 1) designate arcs from the first to
the second node in each pair. A digraph can be displayed by a diagram in which nodes are shown
as points, and arcs are indicated by arrows connecting appropriate pairs of points.

The order of the node pair of an arc specifies a direction for the arc so that its initial and terminal
nodes can be distinguished. For example, the arc (3, 2) has node 3 as its initial node and node 2
as its terminal node. In a symmetric digraph, for every arc there is another arc that connects the
same pair of nodes in the opposite direction. These two arcs are a symmetric pair. Symmetric
digraphs may be referred to as undirected since a symmetric pair of directed arcs can be represented
by an edge. A graph is a symmetric digraph. In the following discussion, the terms digraph and
arc refer to the general case which includes both graphs and digraphs. Some definitions only apply
to graphs, and, in such cases, the terms graph and edge refer to symmetric digraphs.

337




338 R. W. SCHVANEVELDT et al.

A walk is an alternating sequence of nodes and arcs such that the initial node of each arc in
the sequence (except the first) is the same as the terminal node of the preceding arc. For example,
the arc sequence, (3, 2), (2, 1), (1, 4), specifies a walk, while the arc sequence, (3, 2), (1,4), (2, 1),
does not. A walk can also be specified by the sequence of nodes which it visits. For the example
walk specified above, the node sequence is 3, 2, 1, 4. The length of a walk corresponds to the number
of arcs in the walk. A walk is a trail if all arcs in the walk are distinct. A walk is a path if all the
nodes in the walk are distinct. All paths are trails. An arc is a path of length 1. A cycle is a walk
with all nodes distinct except the first and last nodes, which are identical. A connected graph
contains a path (consisting of nodes and edges) between any two nodes.

A forest is a graph with no cycles. A tree is a connected forest. A tree with # nodes has exactly
n — 1 edges. In a tree, there is exactly one path between any two nodes.

Arcs may have weights (distances or costs) associated with them in which case the digraph is
known as a network. The digraph corresponding to a network is obtained by deleting the weights.
The digraph represents the structure of a network, and the weights associated with arcs in a
network provide quantitative information to accompany that structure. The weight of arc (i, j) is
designated by w;. In a network, the weight of a path can be computed by summing the weights
associated with the arcs in the path. The distance between two nodes is the minimum weight of
paths connecting the nodes. The minimal spanning tree [20] of an undirected network consists of
a subset of the edges in the network such that the sub-graph is a tree and the sum of the arc weights
is minimal over the set of all possible trees.

A complete graph has an edge from every node to every other node. A complete network is a
complete graph with weights associated with the edges.

Various characteristics of digraphs are conveniently represented by matrices. A digraph G can
be represented by the adjacency matrix A, an n x n matrix with g; =1 if G contains the arc (i, j)
and a; = 0 otherwise. A network is similarly represented by the network adjacency matrix A with
a; =0, a; = wy, i #jif the network contains the arc (i, j), otherwise a; = 0. The reachability matrix
of G is the n x n matrix in which the jjth entry is 1 if there is a path in G from node i to node
Jand is 0 otherwise. The distance matrix D is the n x n matrix in which d is the (minimum) distance
from node i to node j in a network. If there is no path from node i to node j, d,; = . This distance
matrix is not necessarily symmetric, but it will be symmetric if the network consists of edges rather
than arcs. An arc in a network is redundant if the network obtained by removing the arc yields
the same distance matrix as the original network.

Networks as Models

As psychological models, networks entail the assumption that concepts and their relations can
be represented by a structure consisting of nodes (concepts) and arcs (relations). Strengths of
relations are reflected by arc weights, and the relational meaning of a concept is represented by
its connections to other concepts. The use of network models without semantic interpretation of
the arcs entails the assumption that the structure in the network corresponds to psychologically
meaningful structures. We conjecture that explicit network representations offer the potential of
identifying structural aspects of conceptual representation that relate to memory organization,
category structure, and other human information processing phenomena.

Less restrictive assumptions are required for using networks as a tool for analyzing data.
Networks offer one way, among many, for extracting and representing structure in dissimilarities.
The primary assumption is that network representations will simplify the data and will reveal
patterns that lead to fruitful interpretations of the dissimilarities.

Network models are frequently encountered in cognitive psychology e.g. Refs [21-25] and
artificial intelligence [26-28]. For the most part, however, the networks in these models have been
based on intuitions of the researchers. With a few exceptions, which we mention later, networks
have not been derived from empirical data.

In contrast, network models have been used on sociometric data for some time [29, 30]. These
models characterize relationships among social actors in such social relationships as authority,
liking and kinship. Hage and Harary [31] give graph theoretical analyses of several social relations
of interest to anthropology. While these applications of graph theory have not been patricularly
concerned with dissimilarity data, they have used various kinds of data to determine network
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structures. The structural analyses available from sociometric network models may prove to be of
use in the study of the structure of human knowledge in particular domains. The Pathfinder method
of defining networks corresponding to dissimilarity data may also be of use to applications of
networks to the analysis of sociometric data.

Hutchinson [12] proposed NETSCAL, an algorithm for constructing networks from dissimilarity
data. NETSCAL attempts to identify the arcs that are ordinally necessary given the set of
dissimilarities. Also in 1981, we [14] reported some exploratory work on a procedure, Pathfinder,
for determining network connections.

Feger and his colleagues [13,32] have proposed another method known as ordinal network
scaling (ONS) which represents rank orders of dissimilarities by a network. Friendly [33, 34] and
Fillenbaum and Rapoport [35] investigated some direct methods for establishing network structures
on the basis of empirical data. Friendly used a threshold on ratings of similarity to determine which
edges to include in a network. Fillenbaum and Rapoport asked people to create networks directly
by drawing them. All of these techniques hold the promise of placing network representations
on a firmer empirical foundation. It would be of value, however, to establish formal relationships
between empirically derived networks and graph theory.

DISSIMILARITIES AND GRAPH THEORY

How are dissimilarities related to graph theory? A common form for representing pairwise
dissimilarities is an n x n matrix P, where p; is the dissimilarity of entity i and entity j. Then p;
represents the dissimilarity of an entity with itself which is usually assumed to be zero. If the
dissimilarity estimates are symmetrical (p; = p;;, for all j, j), the matrix will be symmetric about the
major diagonal. Dissimilarities need not be symmetrical, however, and no such constraint need be
imposed on matrices associated with networks. Of the matrices we have considered, we might
regard the dissimilarity matrix either as the distance matrix of a network or as the adjacency matrix
of a network. Either of these could provide a fruitful connection with graph theory so that
algorithms on networks can be used to extract graph and digraph structures from dissimilarities.
We will explore both of these alternatives.

Dissimilarities as Distances

If we regard the dissimilarity matrix as the distance matrix of a network, then our problem is
to determine what network could have produced those distances. This is essentially the basis of
Hutchinson’s NETSCAL algorithm. We will follow his analysis which is based on two theorems
relating distance matrices to networks. A matrix D is realizable as a network if D is the distance
matrix of some network.

Theorem 1 [36]
An n x n matrix D is realizable as a network if and only if

(a) identity: d,;=0;
(b) positivity: d;>0, i#j and
(c) triangle inequality: d; <d, +d,;, for all i,j, k.

A matrix D satisfying identity, positivity, and the triangle inequality does not necessarily
correspond to a unique network. The complete network with w;; = d;, i # j is always one realization
of D. A given realization of D, however, may contain redundant arcs which can be deleted from
the network without changing any distances. An irreducible network is one with no redundant arcs.
Theorem 2 specifies the necessary and sufficient conditions for an irreducible realization of D.

Theorem 2 [37]

Given a distance matrix D, an arc (i, j) is an arc in the (unique) irreducible realization of D if
and only if

d,<min(dy +dy), i#j, k#i, k#]

Another way of stating this result is that the arc (i, /) is not in the irreducible network if and
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only if that network contains an alternative path connecting nodes ¢ and j with weight equal to
d;. (The weight of the alternative path cannot be less than d, because of the triangle inequality.)

When we begin with a set of numbers that has been obtained from human judgement, we should
be particularly concerned about the measurement scale (e.g. ordinal, interval, ratio) underlying the
numbers [38]. The level of measurement that holds for data determines which properties of numbers
we can ascribe to the data. An ordinal level of measurement means that the data values are properly
ordered, but comparing differences may not be meaningful. A ratio scale (which is typical of
physical measurement) allows meaningful statements about the ratios of values so that we can say
that x has twice as much of some quantity as y. It is useful to consider allowable transformations
with the various levels of measurement. With ordinal measurement, any nondecreasing function
is allowed since the values will retain their order. With ratio measurement, the only allowable
transformation is multiplication by a positive constant (i.e. a change of unit).

Realizing that dissimilarity data are usually not measured on a ratio scale which is assumed for
Theorem 2, Hutchinson [12] based the NETSCAL algorithm on a corollary of Theorem 2 which
provides ordinally sufficient but not necessary conditions for the presence of arcs.

Corollary 1 [12]
Given a distance matrix D, the arc (i, j) is present in the (unique) irreducible realization of D
if
dy<min[max(dy, dy)l, i #j, k#i, k#).

The major problem with this approach is the assumption that empirically obtained dissimilarity
matrices meet the conditions for a distance matrix to be realizable as a network. Positivity can
usually be satisfied by assumption and constraints on dissimilarities. However, the triangle
inequality will not necessarily hold for dissimilarities. Of course, Theorems 1 and 2 are concerned
with the relations between networks and their distance matrices when the relation is exact. Our
problem in working with dissimilarities is somewhat different. Aside from the fact that dis-
similarities usually contain error (to which we will return later), psychological judgments may show
systematic violations of the triangle inequality [39]. For one thing, entities may be related to one
another in different ways. To use Tversky’s example, Jamaica is similar to Cuba and Cuba is similar
to Russia, but Jamaica is not at all similar to Russia. Also, psychological judgment may not be
as transitive as logic would suggest. For example, while people may judge that successive items in
the list (forks, silverware, furnishings, manufactured goods and things) are related to one another,
the degree of relatedness may decrease rapidly for pairs further separated in the list. (How closely
related are forks and things?) Perhaps regarding dissimilarities as arc weights will provide a way
around the dubious assumption that dissimilarities conform to the triangle inequality.

Dissimilarities as Arc Weights

If we regard the dissimilarity matrix P as an adjacency matrix 4 such that a,=p,, the
corresponding network is complete if all dissimilarities are finite, certainly an accurate represent-
ation of the dissimilarities, but not very informative. However, because the network represented
by A is a realization of its distance matrix D, the positivity and triangle inequality conditions of
Theorem 1 are satisfiled by D, and Theorem 2 defines the irreducible realization of D. The
irreducible realization of D may consist of fewer arcs than 4, and thus may be more informative
than 4 about the latent structure of the dissimilarities. However, as mentioned earlier, Theorem
2, requires measurement on a ratio scale which is usually not true of dissimilarities. One solution
to this problem is a generalization of the definition of distance in a network that will accommodate
ordinal as well as ratio scales of measurement.

Distances in Networks

Usually, in graph theory, the distance between nodes / and j is the minimum weight of all possible
paths from i to j, i #j where the weight of a path is the sum of the wieghts of the arcs in the path.
From the perspective of measurement scales underlying dissimilarity data, it would be useful to
define a distance function that will permit computations of distances in networks with different
assumptions about the level of measurement associated with the dissimilarities. Such a distance
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function should preserve ordinal relationships between arc weights and path weights for all
permissible transformations of the dissimilarities with different assumptions about the level of
measurement associated with the dissimilarities. Then Theorem 2 would identify the same arcs in
the irreducible realization of the distance matrix for all premissible transformations on the
dissimilarities.

A distance function with the required qualities can be defined by adapting the Minkowski
distance measure to computing distances over paths in networks. This distance function replaces
addition with the r-metric computation so that x + y is replaced by (x” + )", r > 1. Given a path
P consisting of k arcs, the weight of P, w(P) becomes

k

Ir

w(P)=|:Z w,f] , I1<r<oo.
i=1

Note that with r =1, the r-metric function corresponds to simple addition. With r = co, the

r-metric is the maximum function. In fact,

lim (x" + y")'" = max(x, y).

Thus, with r = oo, computing path distances with the Minkowski r-metric only requires maximum
and minimum operations which are order preserving and, therefore, appropriate for ordinal scale
measurement. In particular, the ordinal relationships of path weights will be preserved for any
nondecreasing transformation of the arc weights (dissimilarities).

It can be easily shown that the Minkowski 7-metric satisfies the requirements of a path algebra
as defined by Carre [17].

An attractive property of the Minkowski r-metric is that a single weight can be associated with
a path regardless of segmentation. Given an exhaustive set of path segments, S associated with path
P (i.e. S is a decomposition of path P into sub-paths.)

tir
w(P)= [Z [W(S)]’] :
seS

The use of the r-metric to compute path weights requires the assumption that the arcs in a path
represent independent contributions to the total weight of the path. Increasing the value of r
increases the relative contribution of the larger weights in a path. Following a suggestion by Cross
(1965), cited in Coombs et al. [40], r may be interpreted as a parameter of component weight. With
r = 1, all components (arcs in a path) have equal weight in determining the weight of a path. As
r increases, the components with greater magnitude receive greater weight until, in the limit, only
the largest component (arc) determines the weight of a path. One psychological interpretation of
larger values of r is that the perceived dissimilarity between entities is determined by the
dissimilarity of the most dissimilar relations connecting the entities.

We can generalize Theorem 1 in terms of the r-metric definition of distance.

Theorem 1"
Let 1 <r < o00. An n x n matrix D =[d;] is r-realizable as a network if and only if

(a) identity: d; = 0;
(b) positivity: d;>0, i#j and
(c) the r-metric inequality: d; < (dj+dj)"", r=1, foralli j, k.

The proof follows that of Hakimi and Yau [36] exactly.

While Theorem 1 generalizes readily to the r-metric definition of distance, Theorem 2 does not.
Distance matrices computed with » = co present particular difficulties. If we remove all arcs that
do not satisfy the inequality associated with r = co: d; < min[max(dy, dy)), i #j, i # k,j#k, we
cannot, in general, reproduce the distance matrix with the resulting network.

Thus the r-metric generalization of network distance complicates the notion of redundant arcs.
There are actually two types of redundant arcs: (a) arcs with weight greater than the weight of an
alternative path and (b) arcs with weight equal to the weight of the minimum weight alternative
path. Type (a) redundant arcs can be eliminated without difficulty and the resulting distance matrix
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is unchanged regardless of the value of the r-metric. Type (b) redundant arcs, on the other hand,
cannot be eliminated, in general, without changing the distance matrix associated with the network.

With r = oc, type (b) redundant arcs occur in sets of two or more arcs with equal weight.
Eliminating all of the arcs in a redundant set changes the distance matrix. However, subsets of the
arcs in a redundant set can be eliminated without changing the distance matrix. The problem is
that various subsets can be eliminated and there is no canonical way of selecting one subset over
another. One direct solution to this problem is to define a reduction of a network that excludes
type (a) redundant arcs while including type (b) redundant arcs.

A reduction of a network G is a network G’ such that the arcs in G’ are a subset of the arcs in
G and G and G’ have the same r-distance matrix (D). The triangular reduction of a network G
with r-distance matrix D = [d;] is obtained by removing from G every arc (i, /) with weight greater
than dj;. The following observation gives necessary and sufficient conditions for arcs to be in the
triangular reduction of G.

Given a network G with adjacency matrix 4 = [a;] and r-distance matrix D = [d,],
an arc (i,j) in G is an arc in the triangular reduction of G if and only if a; # co and
dj=a;, i #].

The triangular reduction is a reduction. The triangular reduction may contain arcs whose weights
are equal to the weight of a minimum weight alternative path while the irreducible realization in
the case of r = 1 will not. Both the triangular reduction and the irreducible realization exclude arcs
with weights greater than the weight of a minimum weight alternative path. The triangular
reduction will also be the irreducible realization if there are no arcs in G with weight equal to the
minimum weight of alternative paths. One characteristic of the triangular reduction of G is that
it minimizes the length (number of arcs) of the minimum weight paths.

The definition of the triangular reduction provides a basis for removing arcs from the network
with adjacency matrix 4 = P, the dissimilarity matrix. The Pathfinder algorithm is a realization
of this network reduction criterion.

THE PATHFINDER ALGORITHM

Let us call a network resulting from the application of the Pathfinder algorithm a PFNET of
the original network. The essential idea behind Pathfinder is that dissimilarities between entities
should be represented as arcs in a PENET if the resulting arcs form the minimum weight paths
given the set of dissimilarity estimates. In fact, the definition of Pathfinder can be stated quite
simply: Given a network G defined by dissimilarities, the PFNET(r) is the triangular reduction of
G with r-distance matrix D.

The derivation of Pathfinder networks requires computing the distance matrix of a complete (or
nearly complete) network. This computation has time complexity of O (n*). While this complexity
is prohibitive for rapid computation on large networks, it is quite manageable for occasional
derivations of networks with hundreds of nodes. Several potential applications of Pathfinder
require analysis of problems of this size.

Because different values of r result in different weights of paths, Pathfinder can produce several
different PFNETSs. We now turn to an examination of some of the Pathfinder PFNETSs and their
relations to one another.

The r-metric yields systematic variation in path weights as r varies over the allowable range. This
variation is expressed in the following theorem in terms of the r-distance matrix D computed on
the network G defined by the dissimilarity data.

Theorem 3
Given a network G and r-distances d, and d, computed on G:

d <d

n n

if and only if r,=r,.

The proof of Theorem 3 makes use of the following lemma.
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Lemma 1.
Given wy, ..., w,, w;=0 for all i:

k 1/r k 1/ry
[E w.f'] < [Z w§2:| if and only if r >r,.
1 i=1

i=1 =

This lemma is well known in the literature of harmonic analysis and functional analysis. A
concise proof is presented by Edwards [41, p. 29].

Theorem 3 is immediate from Lemma 1. The lemma shows that the theorem holds for paths,
and upon taking minimums, it holds for distance functions.

Inclusion Relationships among PFNETs

A network G’ is included in in a network G if G and G’ have the same nodes and the arcs in
G’ are a subset of the arcs in G. We also say that network G includes network G’. The following
immediate consequence of Theorem 3 establishes an inclusion relationship among various
PFNETs.

Corollary 2

PFNET(r,) is included in PFNET(r,) if and only if r, > r,.

The definition gives the criterion for including an arc in PFNET(r), the triangular reduction of
the network defined by the dissimilarities with r-distance matrix D. Including arc (i, j) in PENET(r)
requires that the dissimilarity (a;) be equal to the ijth entry of D = [d;]. From Theorem 3 we know
that d,, < d,, r, > r,. Since decreasing r can only increase d, and a; is an upper bound on d;;, every
arc (i, j) in PFNET (r,) is also an arc in PFNET(r,), r, 2 r,.

A family of PFNETs can be generated by variations in r. As a result of the inclusion relationship,
PFNET(r)’s exhibit a monotonic decrease in the number of arcs as r increases. Thus, we can select
a particular PFNET in the family of PFNETSs by specifying a value of r between one and infinity.

The minimally connected PFNET is PFNET(c0). The PFNET(00) has the fewest arcs of any
PFNET for a particular set of data. With symmetrical dissimilarity data, the PFNET(c0) is the
union of all minimal spanning trees [20, 42] for the network defined by the dissimilarities. The
PFNET(0) will be the unique minimal spanning tree when there is such a unique tree. Certain
patterns of ties in the dissimilarity data may result in there being more than one tree in which case
the PFNET(c0) will include all edges that are in any minimal spanning tree. The PFNET(0)
represents the simplest unique PFNET for a given set of dissimilarities. Figure 1(b) shows the
PFNET(0) for the dissimilarity data in Fig. 1(a). The PFNET(c0), in this case, is a tree (no cycles),
and it is the minimal spanning tree for the complete network shown in Fig. 1(a).

Using different r values to compute path weight will usually produce different PFNETs. For
example, PENET(1) is the result of using the usual sum of the arc weights in a path to define the
path weight function. PFNET(1) includes all of the arcs in the PFNET(o0), but PFNET(1) will
usually have additional arcs as well. Figure 1(c) shows PFNET(1) for the dissimilarity data in
Fig. 1(a). In this case, PENET(1) has two additional arcs over the PFNET(c0), and the additional
arcs necessarily introduce cycles.

Levels of Measurement

Although variation in the r parameter has the value of allowing control over the number of arcs
in the PENET, assumptions about the dissimilarity estimates should influence the choice of values
for r. In particular, the measurement scale underlying the dissimilarity estimates places constraints
on values of r because different PFNET structures can result from applying Pathfinder to
transformed data. In would be desirable to select values of r so that the same arcs would be present
in the PFNETs generated from all permissible transformations of the dissimilarity estimates.

With measurement on a ratio scale [38], the only allowable transformations involve multi-
plication by a positive constant (i.e. a change of unit). Pathfinder will preserve the PFNET structure
(i.e. have exactly the same arcs) under multiplication of the dissimilarity estimates by a positive
constant for all values of r. Thus, with ratio-level measurement, any value of r can be used, and
the selection of r can be determined by the desired number of arcs in the PENET or other criteria.
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Fig. 1. (a) The adjacency (or dissimilarity) matrix corresponding to the data network. (b) The distance
matrix and the PFNET for r = 0. The minimal spanning tree. (c) The distance matrix and the PFNET
for r=1.

With psychological measurement, we are often only willing to assume that scale values represent
ordinal information, and, as a result, the “true” scale values may be any nondecreasing function
of the actual values in the data. With such ordinal level measurement [38], Pathfinder will provide
a unique PFNET structure only for r = co. That is, the same arcs will be present in PFNET(o0)
derived from any nondecreasing transformation of a particular set of dissimilarities. Thus, the
PFNET(c0) is a unique structure for levels of measurement ranging from ordinal through interval
to ratio. It is the only unique structure with ordinal measurement.

Applications

We and others have been investigating applications of Pathfinder to problems in cognitive
modeling, knowledge representation, knowledge elicitation, and user-computer interface design.
Details on these efforts can be found in the following Refs [15, 43-49].
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